737

The Crystal and Molecular Structures of α -Thiophene- and α -Selenophene-Carboxylic Acids

By Mario Nardelli, Giovanna Fava and Giulia Giraldi

Structural Chemistry Laboratory, Institute of Chemistry, University of Parma, Italy

(Received 9 August 1961 and in revised form 10 November 1961)

 α -Thiophene- and α -selenophene-carboxylic acids are isostructural. Their monoclinic $(P2_1/c)$ unit cells (Z=4) have the dimensions: a=5.67, b=5.03, c=19.57 Å, $\beta=98.2^{\circ}$ for SC₄H₃COOH and a=5.80, b=5.05, c=20.05 Å, $\beta=97.9^{\circ}$ for SeC₄H₃COOH. The refinement of the structures has been carried out by means of three-dimensional differential syntheses using hkl $(k=0,\ldots,4)$ data. R(hkl) is 11.0% for thiophene-acid and 8.5% for selenophene-acid.

The molecules are planar except that the sulphur and the selenium atoms are displaced by 0.03 (displacement perhaps significant) and 0.06 Å, respectively, from the molecular planes. Bond lengths and angles are given. The increase of the size of the hetero-atom does not seem to modify the C-C distances in the rings. The results are discussed in relation to the dimensions of thiophene and the theoretical calculations on thiophene and selenophene.

The molecules are linked by hydrogen-bonds forming centrosymmetrical dimers.

Introduction

The crystal structures of α -thiophene- and α -selenophene-carboxylic acids have been already determined by two-dimensional Fourier methods (Nardelli & Fava, 1958; Nardelli, Fava & Armellini, 1958), but these results were not refined sufficiently because of poor resolution in the (100) projections. In the present paper the results of three-dimensional refinements using hkl ($k=0,\ldots,4$) data are reported.

Experimental

 α -Thiophene- and α -selenophene-carboxylic acids are isostructural, with the following crystal data:

SC₄H₃COOH, $M = 128 \cdot 14$; $a = 5 \cdot 67 \pm 0 \cdot 01, \ b = 5 \cdot 03 \pm 0 \cdot 01, \ c = 19 \cdot 57 \pm 0 \cdot 01$ Å, $\beta = 98 \cdot 2^{\circ};$ $U = 546 \cdot 6 \text{ Å}^3;$ $D_x = 1 \cdot 557 \text{ g.cm.}^{-3};$ $\mu = 44 \cdot 2 \text{ cm.}^{-1} (\text{Cu } K\alpha);$ F(000) = 264. SeC₄H₃COOH, $M = 175 \cdot 04$; $a = 5 \cdot 80 \pm 0 \cdot 01$, $b = 5 \cdot 05 \pm 0 \cdot 01$, $c = 20 \cdot 05 \pm 0 \cdot 05$ Å, $\beta = 97 \cdot 9^{\circ}$; $U = 581 \cdot 7$ Å³; $D_x = 1 \cdot 966$ g.cm.⁻³; $\mu = 81 \cdot 9$ cm.⁻¹ (Cu $K\alpha$); F(000) = 336.

Space group: $C_{2h}^{5}(P2_{1}/c)$; four molecules per unit cell.

Crystals of both compounds are prisms elongated along [010] with $\{001\}$ and $\{10\overline{2}\}$ predominating.

The intensities were determined photometrically on multiple-film integrated and non-integrated equiinclination Weissenberg photographs (Cu $K\alpha$), taken by rotation around [010]. Discontinuous absorption effects were corrected graphically by Albrecht's (1939) method, the size of the samples being

		SC_4H_3COOH	SeC_4H_3COOH
along	[100]	0·137 mm.	0·125 mm.
0	[201]	0.137	0.037

The numbers of observed and possible independent

Table 1.	Number	of	observed	and	possible	independent	reflections	with	final	R	and	R'	indices
1.4010 1.	11 011000	\mathcal{I}_{J}	00001000	anoa	pocococo	macponaon			J				

		SC	C_4H_3COOH		SeC_4H_3COOH						
	Refle	ctions			Refle	ctions					
	Obs.	Poss.	R	R'	Obs.	Poss.	R	R'			
h0l	75	144	12.05%	17.30%	116	147	7.73%	8.62%			
h1l	181	277	11.71	14.58	206	293	9.14	10.57			
h21	161	250	10.55	13.13	178	268	7.80	10.86			
h3l	128	222	8.27	10.02	127	233	7.81	9.39			
h4l	97	172	11.04	13.78	84	179	11.83	17.48			
Overall	642	1065	10.97	14.15	711	1120	8.54	10.67			

Table 2. Final atomic coordinates and their standard deviations

	x/a	y/b	z/c	x' (Å)	y' (Å)	z' (Å)	$\sigma(x)$ (Å)	$\sigma(y)~({ m \AA}) \ (imes 10^3)$	$\sigma(z)$ (Å)
α -Thiophene	-carboxylic a	cid							
s	0.6042	0.5693	0.1797	2.925	2.864	3.481	2	2	2
0 ₁	0.4332	0.1609	0.0764	$2 \cdot 243$	0.809	1.480	6	6	6
O,	0.7154	0.2203	0.0108	4.026	1.108	0.209	6	6	5
C ₁	0.8130	0.8088	0.2016	4.048	4.068	3.905	10	9	9
C,	0.9730	0.8210	0.1559	5.083	4.130	3.020	7	8	8
C_2	0.9223	0.6326	0.1022	4.945	3.182	1.980	8	9	7
C _A	0.7242	0.4865	0.1082	3.802	2.447	2.096	7	7	6
C_5^*	0.6222	0.2745	0.0604	3.360	3.381	1.170	7	7	6
α -Selenopher	ne-carboxylic	acid							
Se	0.5931	0.5731	0.1823	2.938	2.894	3.620	1	1	1
0,	0.4361	0.1636	0.0741	2.325	0.826	1.472	8	ĝ	6
O,	0.7160	0.2179	0.0086	4.129	1.100	0.171	9	9	7
C,	0.8227	0.8285	0.1986	4.224	4.184	3.944	11	12	9
C,	0.9696	0.8269	0.1515	$5 \cdot 206$	4.176	3.009	11	12	12
C,	0.9136	0.6358	0.0998	5.024	3.211	1.982	10	15	9
C,	0.7219	0.4872	0.1044	3.899	2.460	2.073	9	11	6
C_5^4	0.6248	0.2782	0.0604	3.457	1.405	1.200	9	12	8

Transformation matrix from monoclinic x, y, z to orthogonal x', y', z' coordinates:

1	0	$\cos\beta$ \
0	1	0 }
0	0	$\sin\beta$ /

reflections are given in Table 1. The intensities of the reflections in different layers were correlated by means of 0kl Weissenberg photographs. Only a few reflections with k=5 and 6 were present in these photographs; they were not used in the subsequent calculations. For non-equatorial layers the shape of the spots was taken into account following Phillips (1956).

Refinement

The refinement was carried out in the same way for both compounds. The starting coordinates assumed were those obtained from two-dimensional analyses with mean thermal parameters B=4.2 and 3.5 Å² for the thiophene- and selenophene-compound respectively.

A first step was a three-dimensional Fourier synthesis which gave a new set of coordinates and isotropic thermal parameters for each atom, these last being deduced from the peak heights. Then two cycles of Booth's 'differential synthesis' with isotropic thermal parameters and three cycles with anisotropic thermal parameters were performed. The refinement was considered at an end when the coordinate shifts were less than one half of the corresponding standard deviations for the light atoms.

The atomic scattering factors used throughout the calculations were those of Thomas & Umeda (1957) for Se, of Dawson (1960) for S and of Berghuis *et al.* (1955) for O and C.

The final coordinates with their standard deviations (Cruickshank, 1949) are reported in Table 2; the largest difference with respect to the coordinates from two-dimensional analyses are observed for the y values, many peaks being incompletely resolved in

(100) projections. The quoted $\sigma(y)$'s perhaps underestimate the errors in the y coordinates because reflections with k=5 and 6 have been omitted.

Table 3. Thermal parameters (Å²)

	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
α -Thioj	phene-car	boxylic a	\mathbf{cid}			
\mathbf{S}	3.87	5.74	4.38	-0.41	1.18	-0.18
0 ₁	4.06	5.93	4.48	-1.38	1.17	-0.31
O_2	5.77	5.69	3.95	-1.80	1.64	-0.79
C_1	4 ·10	4.99	4.82	0.32	0.80	-0.22
C_2^-	3.57	4.79	3.69	0.08	0.33	0.40
C_3^-	4.92	6.55	5.53	0.11	0.99	0.17
C_4	$3 \cdot 14$	3.80	3.52	-0.53	0.57	0.12
C_5	3.04	4 ·01	2.90	-0.30	-0.06	0.32
α -Selen	ophene-c	arboxylie	acid			
\mathbf{Se}	4.16	3.56	3.79	-0.24	1.46	-0.15
0 ₁	$4 \cdot 12$	2.79	3.74	-1.10	1.21	- 0.66
0,	6.24	3.78	4.07	-1.20	2.37	-0.93
C ₁	5.49	2.16	3.60	0.62	1.16	-0.49
C ₂	4.93	2.75	5.47	-0.83	1.36	-0.23
$\overline{C_3}$	3.84	2.34	4.61	-1.07	0.92	0.12
C₄	3.96	0.38	3 ⋅06	-0.22	0.87	-0.21
C_5	3.70	1.98	3.31	0.27	0.57	0.12

In Table 3 are listed the anisotropic thermal parameters obtained at the end of the refinement with Cruickshank's (1956) method. Their numerical values are influenced by the omission of reflections with $k \ge 5$, so they must be considered only as additional parameters for improving the agreement between observed and calculated quantities.

The comparison between the observed and calculated structure factors is shown in Table 4 and the corresponding R (observed reflections only) and R'values (including $F_o = \frac{1}{2}F_{\min}$, when $F_c > F_{\min}$, for

Table 4. Calculated and observed structure factors

 $F_{o'}=10|F_{o}|, \ F_{c'}=10F_{c}.$ A minus sign after an $F_{o'}$ must be interpretated as 'less than'

SC4	н _з соон F	Sec ₄ H ₃ COOH F' F'	1	SC4H3COUH	Sec ₄ H ₃ COOH F' F'	1	SC4H3COOH	Sec ₄ H ₃ COOH	ı	sc ₄ н ₃ соон F' F'	Sec ₄ H ₃ COOH F' F'	1	SC4H3COOH	SeC4H3COOH
2 156 4 404 6 280 8 459 10 316 12 281 14 94 16 109	0 0 98 -339 263 -402 263 -292 263 -86 126	1 286 -343 379 -389 678 717 859 -970 535 576 444 398 402 -366 416 407	12 14 16 18 20 22 24	54- 30 567 219 206 56- 26 51- 50 41- 21 65 -82 4 0	324 -332 123 129 313 331 177 -184 223 234 69- 30 134 -176 1	3 4 5 6 7 8 9 10 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	779 992 902 -1066 440 -481 36- 0 148 136 71 67 297 281 246 -197 684 -622	11 12 13 14 15 16 17 18 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	148161 182 194 301 297 8482 267253 71- 33 84 68 6719 117 107	0 1 2 3 4 5 6 7	4 1 143 136 104 119 33- 24 133 -133 199 137 107 109 35- 21 86 97	1 263 252 368 375 124 -113 301 -319 193 187 100 107 68- 54 208 215
18 58 20 54 22 47 24 34	- 68 19 2 46 1 0	8829 8676 134 151 120 -145 1	0 2 4 6 8 10	136 -129 184 151 241 210 148 -132 146 152 58- 43	374 -333 123 103 531 463 395 -342 242 200 88- 90	12 13 14 15 16 17	147 128 229 207 5126 110 116 117102 156150	358 343 503 437 89 -86 169 156 165 -138 322 -285	20 21 22 23	2833 54 - 44 44 51 21	96 -95 123 -115 80 72 33- 47	8 9 10 11 12 13	53 -49 107 -124 45 39 35- 7 76 -75 33- 15	111 -129 226 -249 102 101 69- 85 89 -79 66- 5
0 465 2 640 4 436 6 210 8 521 10 44	-494 571 -338 191 430 56 103	907 -1071 1044 1199 615 -599 93 -37 777 862 431 -438 231 198	12 14 16 18	5648 52 - 95 64 -57 3221 $\overline{4} 0$ 52 - 29	177 -180 227 189 7258 5758 1 410 - 368	18 19 20 21 22 23 24	83 -86 35- 31 57 -52 3121 2818 2416 1912	$\begin{array}{rrrrr} 71- & -2\\ 198 & 182\\ 134 & -144\\ 121 & -113\\ 58- & 9\\ 52- & -42\\ 44- & 26\end{array}$	1 2 3 4 5 6 7	287 -301 207 209 30 30 33 24 110 -78 124 -104 207 208	789 -797 485 440 456 406 106 -114 149 -86 280 -227 763 687	14 15 16 17 18 19	312 297 26- 36 40 47 1828	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
14 54 16 201 18 57 20 109 22 43 24 25	- 26 -222 - 54 142 - 7 - 44	236 180 465 -447 156 151 129 119 7136 114 127	4 6 10 12 14 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	563 -497 80 72 627 596 394 -369 193 216 88 - 61 335 -366	24 25 0 1 2 3	1912 1 1 93 -74 287 -291 616 812 561 -569	129 135 1 230 -217 354 -334 711 736 874 -952	8 9 10 11 12 13 14	307 - 308 318 - 309 246 - 236 113 - 84 30- 24 3114 84 - 78 -171 - 172	763 -887 606 513 721 661 5533 199 -198 60- 19 145 -130 301 261	1 2 3 4 5 6	$\overline{4}$ 1 33- 17 3216 118 -114 33- 10 188 187 3341	1 129 -121 6232 194 -188 103 107 478 443 224 -199
2 805 4 168 6 253 8 453 10 41 12 482 14 52	-850 163 -245 389 32 -450 - 75	716 -724 486 502 813 -841 808 873 62 - 37 799 -817 412 420	20 22 0 24	52- 25 43- 17 78 -79 5 0 152 166 127 -116 5744	229 223 7156 126 -135 1 355 321 208 -183 137 -117	4 5 6 7 8 9 10	540 555 489 491 124 72 96 87 126 128 42 -31 91 -81 94 95	756 835 857 940 154 -131 160 -197 171 201 5021 54- 2 340 350	15 16 17 18 19 20 21 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9 10 11 12 13	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
16 117 18 58 20 55 22 100 24 36	-129 76 - 62 - 119 19 2 0	328 -319 137 -134 259 272 262 -271 62- 13 1	6 8 10 12 14 16	57- 14 160 -147 51- 15 45- 58 36- 23	187 161 248 -232 81- 25 73- 99 6247 43- 64	12 13 14 15 16 17 18	82 -91 195 -183 110 96 84 73 100 94 108 90 35- 12	255 -241 496 -483 219 191 211 187 100 93 162 145 6915	23 24 25 0 1	51 -49 19- 8 3 1 290 -294 314 -293	174 -175 75 82 100 97 1 523 -516 626 -636	15 16 17 18 19 20 21	356 3442 33- 16 3117 99 -86 50 50 60 55	174 176 130 -121 668 6349 222 -220 137 117 197 194
0 52 2 262 4 37 6 264 8 577 10 49 12 54	50 258 231 408 20 20	371 326 778 -761 414 421 295 -303 681 -634 286 290 234 -232	2 4 6 10 12	5 0 127 -130 572 194 203 274 -270 118 -115 56- 11	1 379 -320 87- 83 392 338 579 -503 88- 43 8734	19 20 21 22 23 24	34 -62 49 64 29- 26 25- 22 218	192178 121 115 135 135 542 4647 3531	2 3 4 5 6 7 8	2719 118 99 294 30- 13 164 -172 117 -115 48 37	96 92 213 224 56- 13 138 135 265 -250 333 -346 170 168	22 0 1 2 3	17- 1 5 1 64 -60 3621 36- 2 36- 20	4050 1 86 -95 154 -147 71- 58 179 180
14 57 16 57 18 89 20 47 22 34	- 55 - 78 -132 28 4	86- 50 256 238 285 -265 76- 14 59- 21	14 16 18 20	67 -86 105 98 40- 19 88 -77 6 0	245 -247 300 306 136 -86 52111	1 2 3 4 5	T 1 343 393 4263 206192 108 73 259 258	1 825 841 358 -325 796 -737 374 298 600 561	9 10 11 12 13 14	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	319 333 148 -165 6867 128 -135 101 -113 114 117	4 5 6 7 8 9	75 -81 135 -118 59 55 93 49 93 68 82 88	136 -135 193 -207 69- 75 68- 10 83 100 154 177
2 32 4 730 6 107 8 40 10 413 12 277 14 55	12 -593 130 - 22 -368 277 -69	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 4 6 10 12	66 -96 52- 78 4914 45- 57 39- 52 51 -90	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6 7 8 9 10 11 12 13	96 -65 144 102 332 -324 357 -364 261 138 117 166 -158 47 36	101 -97 311 239 536 -524 758 -778 177 194 496 458 344 -312 6069	15 16 17 18 19 20 21	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10 11 12 13 14 15 16	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
16 150 18 146 20 54 22 46 24 34	-183 135 57 - 31 - 81 3 0	152 -169 295 287 265 -290 116 115 84 111 1	2 4 6 10 12	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 84- 5 148 129 239 -211 185 170 78- 2 105 -112	14 15 16 17 18 19 20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10194 343290 181 170 316 277 236209 185160 69 65	1 . 2 . 3 4 5 6	3 1 124 121 109 89 119 93 131 -119 76 -73 2826	1 464 455 5141 88 2 153 -133 331 -291 170 146	1 2 3 4 5 6	5 1 36- 1 65 59 132 133 188 -197 112 -110 3613	1 69- 8 69- 89 269 278 289 -287 325 -323 71- 59
0 272 2 258 4 387 6 207 8 108 10 213 12 119	253 208 -328 193 123 -194 102	265 247 614 517 738 -692 424 382 195 156 377 -349 326 303	14 16 0 2 4	86 82 3120 7 0 32- 28 2835	236 237 115 -129 1 100 89 97 -115 44- 37	21 22 23 24 25	3219 29 - 35 39 - 41 2017 2 - 17	$ \begin{array}{r} 64 - & 7 \\ 61 & 57 \\ 168 & 134 \\ 72 & -79 \\ 141 & -137 \\ 1 \end{array} $	7 8 9 10 11 12 13	314 299 55 41 159 -159 41 32 161 -149 144 134 194 177	785 699 159 -141 464 -425 147 142 160 -148 174 182 383 390	7 8 9 10 11 12 13	86 -68 36- 18 98 84 90 -48 67 -63 100 102 33- 30	71- 54 711 131 117 134 -126 225 -227 183 190 187 213
14 57 16 54 18 47 20 36	68 67 - 81 16 3 0 - 86	147140 112102 155 158 9593 1 455467	2 4 6 8	7 0 34 55 35 28 33 34 30 18 23 43	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 2 3 4 5 6	$\begin{array}{r} 124 & -116\\ 367 & 422\\ 22- & -50\\ 22- & -38\\ 127 & -136\\ 288 & -307\\ 26- & -42\\ \end{array}$	51 76 662 734 79 -121 43- 42 248 -250 593 -658	14 15 16 17 18 19 20	35- 18 80 -66 44 -38 35- 31 - 3419 33- 65 58 -67	90 -85 341 -331 107 94 176 180 6828 131 112 129 -113	14 15 16 17 18 19 20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6422 6258 60- 0 160 -153 83 88 170 187 61 84
4 291 6 133 8 146 10 195	282 109 –143 182	764 772 136 -138 209 -213 514 522	1 2	0 1 64247 232 197	1 337 -481 380 434	7 8 9 10	252 231 78 72 125 -129 39 53	517 569 5592 219 -277 60- 47	21 22 23 24	80 -74 257 36 29	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0	6 1 45 -34 32- 12	1 6421 63- 43

unobserved reflections) are reported in Table 1. The standard deviations of electron-density and of their first derivatives are: $\begin{array}{l} \text{SC}_4\text{H}_3\text{COOH } \sigma(\varrho) = 0 \cdot 19 \text{ e.} \text{\AA}^{-3}; \\ \sigma(A_h) = 0 \cdot 44, \ \sigma(A_k) = 0 \cdot 33, \ \sigma(A_l) = 0 \cdot 40 \text{ e.} \text{\AA}^{-4}; \\ \text{SeC}_4\text{H}_3\text{COOH } \sigma(\varrho) = 0 \cdot 26 \text{ e.} \text{\AA}^{-3}; \\ \sigma(A_h) = 0 \cdot 67, \ \sigma(A_k) = 0 \cdot 65, \ \sigma(A_l) = 0 \cdot 64 \text{ e.} \text{\AA}^{-4}. \end{array}$

Table 4 (cont.)

SC4H3COOH	Sec ₄ H ₃ COOH F' F' 1	sc ₄ h ₃ cooh F' F'	Sec ₄ H ₃ COOH . F' F' 1	SC4H3COOH	SeC4H3COOH	SC ₄ H ₃ CCOH 1 F' F'	SeC ₄ H ₃ COOH F' F'	SC4H3COOH	SeC4H3COOH
6 2 36 45 3 35 -34 4 30- 19 5 28- 35 6 41 -53 7 49 -48 8 2321 9 21- 5 10 1719 11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 - 6 60- 46 203 195 66- 1 324 -318 89 -86 207 69- 17 68- -48 65- 21 203 -163 203 -163 57- -25 -25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	227 - 231 67 - 72 127 124 135 118 105 -105 157 55 229 - 215 95 -100 110 109 137 - 119 35 46 105 116 319	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94 107 4224 1 244 274 424 -481 70 -70 485 520 180 -167 4712 5153 417 -411 5726 522 480
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31- -349 58 46 52 59 $-5222-$ 8 18- -272 2 19- 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	264 268 0 78- -58 -58 194 176 2 77- 17 2 228 -224 2 191 167 6 191 167 6 55 -86 6 50- 24 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrr} 1 \\ 87 & -101 \\ 159 & 157 \\ 84 & 65 \\ 63- & -36 \\ 61- & -37 \\ 59- & -30 \\ 56- & -48 \\ 52- & 59 \\ 48- & 62 \\ 41- & -83 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290 293 152 -121 68- 54 6912 7048 267 286 68- 55 181 -206 91 -75 56- 47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7469 162151 137 155 382 416 314 - 313 122 113 2530 26- 3 233 218 163 139 89 - 89 97 - 91 50 53 31- 14 128	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 4 & 2 \\ 46 & -42 \\ 142 & 155 \\ 30- & 54 \\ 30- & 43 \\ 31- & -14 \\ 149 & -158 \\ 140 & -156 \\ 31- & -52 \\ 31- & -32 \\ 31- & 12 \\ 30- & 18 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 153 140 98 88 68- 27 92 92 107 -93 93 -128 185 173 64- 72 63112 6134 5852 5585	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52 52 15- 18 7 2	51 - 137 45 - 97 39103 1 352 36 - 21 3771 65 -97 88 - 80 79 - 45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6811 131 118 210 204 70 - 34 204 -199 89 -80 116 113 59 - -24 54 - 29 47 - 33 78 -92
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202 203 276 -306 27 -25 244 270 166 175 130 122 33 -35 59 -56 83 80 155 138 107 -99 30- 32 31- 14 31- 8 48 39	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 337 -284 627 538 223 204 527 -497 173 -143 421 372 49- 38 195 154 427 -404 131 -149 353 340 68- 14 95- 154	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 -52 1 492 415 443 99 88 198 -209 104 113 325 -329 57- 30 438 442 175 184 310 -302 6641 68- 7 204 -220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	115 102 18 202 -193 19 168 -165 20 144 154 21 63 59 49- 13 35- 34 0 1 1 2 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25- 2 50 -41 83 -88 104 -110 154 -164 88 95 109 93 2929 30- 1 30- 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44 41 71 77 47 45 70 83 47 -42 38 -35 50 52 24- 19 22- 7 20- 20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{matrix} 1 \\ 429 \\ -461 \\ 35- \\ -26 \\ 287 \\ -277 \\ 51 \\ 63 \\ 422 \\ 415 \\ 47- \\ 23 \\ 524 \\ -566 \\ 186 \\ -182 \\ 57- \\ 74 \end{matrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Fairly good agreement has been found between observed and calculated peak heights and curvatures (Table 5).

The calculations were performed on an IBM 650 computer using the programmes of Brown, Lingafelter, Stewart & Jensen (1959) for structure factors and

MARIO NARDELLI, GIOVANNA FAVA AND GIULLA GIWAM SC 4H3 COOH 79 34 -39 150 13 ¥'c 65-62-59-54-126 40-T'o 0008 20 19 19 19 19 19 195 195 195 25 25 25 44 -111 -23 23 22 -17 -39 30 30 30 20-44 0 43 25-26-27-43 54 25-25-24-21-19-20 141 17 5 5 5 1 3 8 8 1 1 2 1 6 0 0 3 5 . 52 30 -9 -91 -91 -91 -91 -91 -91 -91 -28 -84 -9 -84 -49 4 5 6 7 8 9 0 11 12 13 15 16 7 ¹ 68 68-62-122 66-117 64-145 59-56-56-56-56-47-40-209 71 28 428 142 245 -10 219 -0 -67 64 9 r'o 239 110 342 510 169 169 126 68-231 63-68-231 63-95 53-45-95 504^H. 5'0 89 55 118 21-161 38 26-31 21-26-34 34 32-34 32-34 32-34 32-34 26-26-26-25-25-24-62 40 28 32 17-0 1 2 3 **4** 5 6 T 8 9 10 11 12 Sec 4H3COOH -3 4 5 6 7 8 9 101 12 13 4 5 16 7 8 9 101 12 13 14 5 16 7 18 19 Ŧ'c 5C 4H 3C00H ۲'۵ 254 87 -41 -83 -33 252 123 57-53-85 40-¥'c SeC4H3COOH 66 31 33 -37 -19 67 39 38 26-35 17-5C4H3C00H 14 15 16 17 18 19 54 170 219 325 2019 236 247 236 247 234 70° ¹ 57-57-262 363-245 263-245 219 111 258 66-64-143 51-149 10 147 171 5,199 14 23 48 49 1,132 1,132 1,32 47 L 66-66-162 62-62-62-58-52-52-125-125-34-34-**4** 89 812 92 19 918 12 44 256 422 23 1 7 1 5 17 56 36 36 31 31 30 4 9 4 54 4 54 4 54 35-52 34-33-50 41 26-22-21 -52 -3 -3 -3 44 -34 -34 69-68-65-158 78 83 47-40-1 2 3 4 5 6 7 8 9 10 1 1 2 1 3 4 5 6 7 8 9 10 1 1 2 1 3 1 4 5 6 7 8 9 10 1 1 2 1 3 1 4 5 6 1 7 1 8 9 19 9 10 11 12 13 14 15 16 17 18 84 26-26-29 25-29 25-24-56-20-22 36 33-33-46 33 47 31-42 29-24-24-44 18-0 1 2 3 5 6 7 8 9 10 11 12 1. 2 3 4 5 6 7 8 9 101 12 7 3 4 15 16 10 328 -380 -38 26 69 18-32 24-317 115-28-25-46 22-20-17-0 1 2 3 4 5 6 7 8 9 10 11 2 13 1 4 5 15 17 18 9 11 1 13 15 15 17 18 9 232 49 51 26 146 -71 -165 55497722 1937 47 32-95 87 133 35-133 35-11 34-54 31-54 31-54 26-25 28 134 84 269 186 23 24 24 24 24 169 169 169 169 169 121 186 21 14 15 26 ¹ 67-155 94 186-185-65-1201 175 121 175 123 46-175 123 46-85 31-65-403 61-95 69-178 70-337 61-200 62-58-58-88 51-33-68 45 40 33-33-33 60 72 34 21-24-24-24-24-24-105 155 258 223 69-69-117 65-238 59-55-50-41-58-113 55-54-52-49-44-92 -39 145 17 -30 72 -48 -102 516 -71 4 7 9 16 29 44 56 26-72 70 26-30 26-41 25-73 32-18-14-01234567 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 195 21 -34 -100 -72 317 2017 96 175 178 358 416 65-65-65-132 69-368-274 63-59-54-115 93 154 -91 -151 -329 -510 -51 -510 -51 -41 -94 -56 -560 -260 -41 119 39 204 -56 -14 24 T 9 78 195 15 199 15 T 80 18 1 1 1 7 42 16-65 80 92 133 24-43 34 24-65 26-84 24-24-43 34 21-65 26-38 24-22-38 42 52 21-246 21-56 19-17-10-1 2 3 4 5 6 T 8 9 10 1 12 1 14 15 6 T 18 19 20 1 2 3 4 5 6 T 8 9 10 1 1 2 182 -559 -159 -159 -150 -159 -159 -159 -159 -159 -159 -159 -142 -12 183 70 342 117 70-69-68-139 58-139 58-54-49-42--53 -8 -75 14 120 -60 96 49-93 46-112 39-34-35-54 152 655-35-35-34-33 49 29-26-23-18-6 -29 -16 -16 -31 -40 0 1 2 3 4 5 6 7 8 9 10 11 72 14 5 13 14 5 24-23-22-21-36 258 153 236 116 198 68-69-185 69-185 69-166 128 0123456 118 73 30 28 45 28 27-69 41 31 64 1 2 3 4 5 6 T 8 9 10 1 1 2 6 33 5 4 22 9 9 0 8 8 2 9 3 5 8 2 9 3 5 8 2 9 29 selenophene-derivative: there is no significant differ--30 201 .185 15² 24-58 25-24-24-24-24-23-46 20-29 selenophene-derivative: there is no significant differ-ence between Se-C1 and Se-C4 (Δ | σ =1.53), C1-C2 and ence between Se-C1 and Se-C4 (Δ | σ =1.48) C2-C4 (Λ | σ =0.05). Se-C1-C2 and Se-C4-C2 (Λ | σ =1.48) 1 2 3 4 5 6 T 8 9 10 1 12 ence between servit and servit $(\Delta | \sigma = 1.53)$, $(\Delta | \sigma = 1.48)$, $C_3 = C_4 (\Delta | \sigma = 0.05)$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48)$, $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C2 and Se-C4-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$), $C_4 = 0.05$, Se-C1-C3 ($\Delta | \sigma = 1.48$) $U_3 - U_4(\Delta | \sigma = 0.05), 5e - U_1 - U_2 and 5e - U_4 - U_3(\Delta | \sigma = 1.48),$ $U_3 - U_4(\Delta | \sigma = 0.05), 5e - U_1 - U_2 and 5e - U_4 - U_3(\Delta | \sigma = 1.48),$ $G_1 - C_2 - C_3 and C_2 - C_3 - C_4(\Delta | \sigma = 1.14),$ $G_1 - C_2 - C_3 and C_2 - C_3 - C_4 - (\Delta | \sigma = 1.14),$ $G_1 - C_2 - C_3 and C_2 - C_3 - C_4 - (\Delta | \sigma = 1.14),$ $G_1 - C_2 - C_3 - C_4 - C_3 - C_4 - C_4 - C_3 - C_4 - C_4 - C_3 - C_4 -$ 4 4 5 8 4 9 9 4 9 R 4 6 5 7 2 5 2 7 7 5 7 86 69-230 117 305 78 207 154 65 207 197 320 59 293 -03 -41 45 233 128 100 98 80 60 Considering the results obtained by Goodwin the angle on the angle of (107°) . Thomson (1954) for α -furoic acid, the angle of (107°) . Thomson (1954) for α -furoic acid, the increasing set of the second set of the second 42 66 42 98 51 43 42 35-128 64 33--99 -81 -48 1 2 3 4 5 6 T 8 9 10 1 1 2 13 0123 netero-atom increases from Se $(87^{\circ} 6')$ to O (107°) , size also according to the general rule. With increase also according to the general rule X-C distances increase of the hetero-atom, the ring are not considered in the ring are not provided but the other dimensions in the ring are not provided by the start of the s Fourier syntheses, and those of Shiono (1957, 1959) for differential synthesis and refinement of thermal rourier syntheses, and those or Smono (193), 1939) for differential synthesis and refinement of thermal narameters of the hetero-atom, the X-U distances increase als but the other dimensions in the ring are not sensitive but the other dimensions in the ring and C3 which angles on C2 and C3 which angles on C4 and C3 which are also and C3 which are also and C3 which are also and C3 and C3 which are also and C3 and C attected, excepting the angles on U_2 and U_3 with increase from furane- (~ 104°) to selenophene-der Bond lengths and angles are reported in Table 6 and from Fig. 1. The standard deviations are calculated from Bond lengths and angles are reported in Table 6 and frig. 1. The standard deviations are calculated from Fig. 1. The standard deviations are calculated from the formulae of Ahmed & Cruickehank (1052) for ve (~ 110). The carboxyl groups in the two acids are not to and there is a are not the singer and there is a Fig. 1. The standard deviations are calculated from Cruickshank (1953) for the formulae of Ahmed & Cruickshank (1960) for anoles bond lengths and of Darlow (1960) for anoles Lue carpoxyl groups in the two actus are not is a same distance from the rings, and there is a same distance difference between the distance but similicant difference between the distance parameters. same alstance from the rings, and there is a but significant difference between the distance (Alg = 2.52) It come that is the color the tormulae of Anmed & Urulekshank (195) bond lengths and of Darlow (1960) for angles. Uning the circuificence test of Canicleshank & T ong lengths and of Uarlow (1900) Ior angles. Robert-Using the significance test of Cruickshank & and and Using the significance hand lengths and another but significant difference between the distance $(\Delta | \sigma = 2.53)$. It seems mean is mean of denivative the carboxyl mean is mean. Using the significance test of Uruickshank & Robert-son (1953) to compare bond lengths and angles, one can see that there is a mirror line of symmetry tive (~ 115°). $(\Delta | \sigma = 2.53)$. It seems that in the seter derivative the carboxyl group is more co son (1953) to compare bond lengths and angles, one can see that there is a mirror line of symmetry in the ring of both compounds. one can see that there is a mirror line of symmetry in the ring of both compounds. Thus in the thiophene-derivative S-C1 and S-C4 lengths are not significantly In the ring of poth compounds. Thus in the theorem of significantly derivative S-C1 and S-C4 lengths are not significant the different ($\Lambda | \sigma = (1, -1_{n}) | (\sigma^{2} \perp \sigma^{2})^{1/2} \equiv 0.67 < 1.96$) and the different ($\Lambda | \sigma = (1, -1_{n}) | (\sigma^{2} \perp \sigma^{2})^{1/2} \equiv 0.67 < 1.96$) derivative S-C1 and S-C4 lengths are not significantly derivative S-C1 and S-C4 lengths are not significantly different $(\Delta | \sigma = [h_1 - h_2] | (\sigma_1^2 + \sigma_2^2)^k = 0.67 < 1.96)$, S-C1-C2 different $(\Delta | \sigma = [h_1 - h_2] | (\sigma_1^2 + \sigma_2^2)^k = 0.67 < 1.96)$, S-C3-C4 different $(\Delta | \sigma = [h_1 - h_2] | (\sigma_1^2 + \sigma_2^2)^k = 0.67 < 1.96)$, C2-C3 and C2-C3-C4 and C3-C4-C3 $(\Delta | \sigma = 0.08)$, S-C4-C3 $(\Delta | \sigma = 0.08)$, since the second se same applies to $\cup r^{\cup 2}$ and $\cup r^{\cup 4} (\Delta | \sigma = \upsilon \cdot \upsilon 0)$, $\sum_{2} \cdots C_{2} C_{3}$ and $\sum_{C_{4} - C_{3}} (\Delta | \sigma = 0.08)$, $c_{1} - C_{2} - C_{3}$ and for $(\Delta | \sigma = 0.46)$. Similar results are obtained

Table 5. Atomic peak heights (e.Å⁻³) and curvatures (e.Å⁻⁵)

α -Thiophene-carboxylic	acid	Q	$-A_{hh}$	$-A_{kk}$	$-A_{ll}$	A_{hk}	A_{hl}	A_{kl}
S	obs. calc.	$24.5 \\ 24.2$	$\begin{array}{c} 229\\ 228 \end{array}$	$\frac{160}{160}$	218 218	$-1 \\ -1$	56 60	$-1 \\ 2$
O ₁	obs. calc.	9·8 9·7	78 77	58 58	$72 \\ 72$	7 7	17 17	0
O_2	obs. cale.	$9.5 \\ 9.5$	71 71	57 57	81 79	$-8 \\ -8$	17 18	$-1 \\ 0$
C_1	obs. cale.	$\begin{array}{c} 5\cdot 9\\ 6\cdot 3\end{array}$	44 47	$\frac{36}{38}$	46 49	$2 \\ 2$	$\frac{11}{12}$	$2 \\ 2$
C_2	obs. cale.	6·7 7·1	61 63	43 46	$\begin{array}{c} 52 \\ 54 \end{array}$	$2 \\ 2$	9 11	1
C_3	obs. cale.	7·0 6·4	59 54	38 35	$\begin{array}{c} 59 \\ 56 \end{array}$	$-1 \\ 2$	11 12	1 0
C_4	obs. cale.	7·4 7·7	69 70	45 47	$\begin{array}{c} 62 \\ 65 \end{array}$	$-1 \\ -1$	12	4 4
C_5	obs. calc.	$7 \cdot 1$ $7 \cdot 8$	$\begin{array}{c} 60 \\ 65 \end{array}$	$\begin{array}{c} 45\\ 50\end{array}$	66 71	-5 - 5	11 14	0 0
α -Selenophene-carboxylic	acid							
Se	obs. calc.	$65 \cdot 5 \\ 64 \cdot 6$	$\begin{array}{c} 595 \\ 586 \end{array}$	$\begin{array}{c} 467 \\ 456 \end{array}$	$\begin{array}{c} 640 \\ 632 \end{array}$	$-6 \\ -4$	$\frac{156}{154}$	$-2 \\ -1$
O ₁	obs. calc.	11·1 11·1	86 82	70 69	$\begin{array}{c} 103 \\ 102 \end{array}$	$-3 \\ -3$	19 15	$-2 \\ -3$
O ₂	obs. calc.	$10.8 \\ 10.6$	77 76	75 74	98 96	-5 - 5	$\begin{array}{c} 25\\ 24\end{array}$	$2 \\ 2$
C_1	obs. calc.	7·8 7·7	$\begin{array}{c} 59 \\ 59 \end{array}$	$\begin{array}{c} 56 \\ 54 \end{array}$	69 68	3 3	10 10	3 2
C_2	obs. calc.	7·6 7·3	62 60	$\begin{array}{c} 53\\52\end{array}$	$\begin{array}{c} 56 \\ 55 \end{array}$	-7 - 6	8 8	$-2 \\ -2$
C_3	obs. calc.	7·9 7·7	68 67	44 43	71 70	$-8 \\ -7$	14 15	2 1
C_4	obs. calc.	$8.8 \\ 9.2$	75 80	60 61	$\frac{102}{108}$	1 1	28 31	$0 \\ -1$
C_5	obs. calc.	$\begin{array}{c} 8 \cdot 2 \\ 8 \cdot 5 \end{array}$	72 73	56 57	79 82	-6 - 6	10 12	4 4

Table 6. Bond lengths and angles

	SC_4H_3COOH	${ m SeC_4H_3COOH}$
$X-C_1$	1.701 ± 0.010 Å	1.850 ± 0.012 Å
$C_1 - C_2$	1.363 ± 0.007 1.363 ± 0.012	1.872 ± 0.008 1.355 ± 0.015
$C_3 - C_4$ $C_9 - C_9$	1.362 ± 0.010 1.414 ± 0.011	1.356 ± 0.015
$C_4 - C_5$	1.481 ± 0.010	1.438 ± 0.014
$C_5 - O_1$ $C_5 - O_2$	1.292 ± 0.009 1.201 ± 0.008	$1 \cdot 301 \pm 0 \cdot 013$ $1 \cdot 266 \pm 0 \cdot 012$
$O_1 H \cdots O_2'$	$2 \cdot 625 \pm 0 \cdot 008$	$2 \cdot 613 \pm 0 \cdot 011$
$C_1 - X - C_4$	92° 1' ± 24'	87° 6' ± 26'
$X - C_1 - C_2$ $X - C_4 - C_3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$112 15 \pm 49$ 110 40 ± 41
$C_1 - C_2 - C_3$ $C_2 - C_2 - C_4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$114 12 \pm 61$ 115 42 + 52
$X - C_4 - C_5$	$122 10 \pm 31$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$C_3 - C_4 - C_5$ $C_4 - C_5 - O_1$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$C_4 - C_5 - O_2$	119 47 \pm 40 124 49 \pm 40	$120 \ 32 \pm 54$
$0_1 0_5 0_2$	10 - 40	$121 30 \pm 30$

with the ring than in the thiophene-derivative; this explains the increased values of C_5-O_1 and C_5-O_2 in

the former compound. The whole carboxyl group appears to be attracted by the hetero-atom, the angle $C_3-C_4-C_5$ being larger than $X-C_4-C_5$; the effect is more pronounced in the selenophene-derivative. The O_1 atom is probably that belonging to the hydroxyl group as indicated by the value of the distance C_5-O_1 which is longer than C_5-O_2 and by the angle $C_4-C_5-O_1$ which is smaller than $C_4-C_5-O_2$. These rules can be easily deduced considering the carboxyl group dimensions reported in the literature; some results are listed in Table 7.

In both compounds the oxygen of the OH group is facing the hetero-atom; the inverse situation occurs in α -furoic acid. The distances $O_1-S=2.948\pm0.006$ Å and $O_1-Se=3.046\pm0.008$ Å are slightly shorter than the sums of the van der Waals radii $r_0+r_S=3.00$ Å $(r_S=1.60$ Å, Donohue, 1950), $r_0+r_{Se}=3.14$ Å $(r_{Se}=1.74$ Å, Marsh, Pauling & McCullough, 1953). Shorter contacts of this kind have been observed in thioindigo (2.82 Å, von Eller, 1955*a*) and selenoindigo (2.99 Å, von Eller, 1955*b*).

MARIO NARDELLI, GIOVANNA FAVA AND GIULIA GIRALDI

Acid	C–C	C0	C-OH	C-C-O	0COH	C-C-OH	$0H\cdots 0$	Reference
Formie	_	1·23 Å	1·26 Å		123°		2.58 Å	Holtzberg, Post & Fan- kuchen, 1953
Acetic	1·54 Å	$1 \cdot 24$	1.29	122°	122	116°	2.61	Jones & Templeton, 1958
β -Nitropropionic	1.56	1.22	1.34	126	119.5	114.5	2.66	Sutor, Calvert & Llewel- lyn, 1954
β -Ionylidene crotonic (trans)	1.463	1.244	1.325	122.5	122.3	$115 \cdot 2$	2.673	Eichhorn & MacGillavry, 1959
Malonic	$\left\{ egin{array}{c} 1{\cdot}54 \\ 1{\cdot}52 \end{array} ight.$	$1 \cdot 24 \\ 1 \cdot 22$	$1.29 \\ 1.31$	$\begin{array}{c}117\\119\end{array}$	$\frac{128}{128}$	$\frac{115}{113}$	$2.71 \\ 2.68$	Goedkoop & MacGillavry, 1957
Succinic (β -form)	1.51	1.25	1.30	124	122	114		Morrison & Robertson, 1949a
Maleic	$\left\{\begin{array}{c}1{\cdot}44\\1{\cdot}47\end{array}\right.$	$1.20 \\ 1.21$	$1.28 \\ 1.28$	$118.4 \\ 111.3$	$125.5 \\ 119.2$	$114.8 \\ 124.1$	2.46	Shahat, 1952
Glutaric (β -form)	1.53	1.23	1.30	123	122	115	2.69	Morrison & Robertson, 1949b
Adipic	1.52	1.23	1.29	120	126	114	—	Morrison & Robertson, 1949c
Pimelic (α -form)	$\left\{\begin{array}{c}1{\cdot}48\\1{\cdot}50\end{array}\right.$	$1 \cdot 20 \\ 1 \cdot 24$	$1.34 \\ 1.26$	$126.6 \\ 121.2$	$119.8 \\ 121.0$	$113.9 \\ 117.8$	$2.67 \\ 2.68$	Kay & Katz, 1958
Sebacic	1.51	1.24	1.27	120	124	116		Morrison & Robertson, 1949d
Racemic tartaric hydrate	$\left\{ egin{array}{c} 1\cdot 44 \\ 1\cdot 52 \end{array} ight.$	$1 \cdot 22 \\ 1 \cdot 20$	$1.28 \\ 1.33$	$\begin{array}{c} 123 \\ 120 \end{array}$	$\begin{array}{c} 124 \\ 120 \end{array}$	$\begin{array}{c} 113\\116\end{array}$	2.72	Parry, 1951
Citric (anhydrous)	$\left\{ \begin{array}{c} 1{\cdot}494 \\ 1{\cdot}533 \\ 1{\cdot}511 \end{array} \right.$	$1.236 \\ 1.210 \\ 1.239$	$1.324 \\ 1.331 \\ 1.305$	$127.5 \\ 123.4 \\ 122.4$	$120 \cdot 9 \\ 124 \cdot 0 \\ 123 \cdot 1$	$111 \cdot 2 \\ 112 \cdot 7 \\ 114 \cdot 6$	$2.659 \\ 2.730 \\ 2.633$	Nordman, Weldon & Patterson, 1960
Benzoic	1.48	1.24	1.29	122	122	118	2.64	Sim, Robertson & Good- win, 1955
Salicylic	1.458	1.241	1.333	122.7	$120 \cdot 2$	117.0	2.627	Cochran, 1953
p-Amino-salicylic	1.41	1.21	1.35	125	121	114	2 ·70	Bertinotti, Giacomello & Liquori, 1954
1-Naphtoic	1.40	1.25	1.28	127	110	122	2.58	Trotter, 1960
2-Naphtoic	1.44	1.33	1.37	122	112	127	2.54	Trotter, 1961
Nicotinic	1.48	1.18	1.34	124	122	114		Wright & King, 1953
α -Furoic	1.47	1.16	1.26	117	124	119	2.53	Goodwin & Thomson, 1954
Allokainic	$\left\{\begin{array}{c}1{\cdot}55\\1{\cdot}54\end{array}\right.$	$1.25 \\ 1.20$	$1.26 \\ 1.32$	$\begin{array}{c} 116\\ 123 \end{array}$	$\frac{130}{125}$	$\begin{array}{c}113\\112\end{array}$	2.71	Cruickshank, 1959

The analyses for the planarity of the molecules in the two acids are summarized in Table 8. The best least-squares planes have been calculated following Schomaker, Waser, Marsh & Bergman (1959), using a diagonal weight matrix. The statistical analysis, χ^2 test (Weatherburn, 1947), of the significance of the distances from the planes, Δ , shows that they are significant for the mean planes calculated through all the atoms in both compounds, the deviation from planarity being larger in the case of selenophenederivative. For non-significant Δ values it is sufficient to exclude the hetero-atom only from the calculations of the mean planes. The distance $(\Delta = -0.065 \text{ Å})$ of Se from the plane of the other atoms is nearly twice that $(\Delta = -0.028 \text{ Å})$ of S and both are on the same side of the plane. It is possible that, owing to systematical errors, this last displacement could have a lower significance than that given by the statistical analysis.

The dihedral angle formed by the planes SeC₁C₂ and and SeC₃C₄ is 176° 39'; the corresponding angle in the thiophene-derivative is 178° 0'. The lack of planarity in the selenophene-acid is in agreement with the study of the Raman and infrared-absorption spectra of liquid selenophene (Gerding, Milazzo & Rossmark, 1953) which indicates a C_s symmetry for this molecule. The same feature has not been observed for the thiophene molecule which is generally assumed to be planar (Schomaker & Pauling, 1939; Bak, Christensen, Rastrup-Andersen & Tannenbaum, 1956). The hetero-atom does not lie in the plane of the ring in thioindigo ($\Delta = 0.08$ Å, von Eller, 1955*a*) and selenoindigo ($\Delta = 0.11$ Å, von Eller, 1955*b*), while in
 Table 8. Analysis of the planarity of the molecules

Equation of the plane referred to orthogonal axes: $m_1x'+m_2y'+m_3z'=d$

Post plane	α -Thiophene-carboxylic acid					α -Selenophene-carboxylic acid				
best plane through m_1 m_2 m_3 d	$ \begin{array}{c} \sigma_{\perp}^{*}(\mathring{A}) \\ (\times 10^{3}) \\ 2 \\ 6 \\ 6 \\ 9 \\ 8 \end{array} $	$\begin{array}{c} \mathrm{SO_1O_2C_1C_2C_3C_4C_5} \\ & -0.5058 \\ & 0.6788 \\ & -0.5324 \\ & -1.3867 \end{array}$		$\begin{array}{c} \hline O_1 O_2 C_1 C_2 C_3 C_4 C_5 \\ - 0.4981 \\ 0.6780 \\ - 0.5406 \\ - 1.3688 \end{array}$			$\begin{array}{c} \mathrm{SeO_1O_2C_1C_2C_3C_4C_5} \\ -0.5146 \\ 0.6790 \\ -0.5236 \\ -1.4415 \end{array}$		$\begin{matrix} O_1 O_2 C_1 C_2 C_3 C_4 C_5 \\ & -0.4970 \\ & 0.6770 \\ & -0.5428 \\ & -1.4010 \end{matrix}$	
$\begin{array}{c} \text{Atom} \\ X \\ O_1 \\ O_2 \\ C_1 \\ C \end{array}$		$ \begin{array}{c} \overline{ \measuredangle (\AA) } \\ (\times 10^3) \\ -2 \\ 13 \\ -9 \\ 22 \\ 11 \\ 11 $	$\frac{\Delta/\sigma_1}{-1.0}$ $-\frac{1.0}{2.2}$ $-\frac{1.5}{2.4}$ 1.4	$ \begin{array}{c} \overbrace{ \begin{array}{c} \varDelta (\AA) \\ (\times 10^{3}) \\ -28 \\ 0 \\ 2 \\ 0 \\ 5 \end{array} } \end{array} $	$ \frac{\Delta/\sigma_{\perp}}{(-14\cdot 0)} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\sigma_{\perp}^{*}(\text{\AA}) \ (imes 10^{8}) \ 1 \ 8 \ 8 \ 11 \ 12$	$ \begin{array}{c} $	$\frac{\Delta/\sigma_{\perp}}{-1.0}$ -3.3 -3.3 -3.3	$ \begin{array}{c} $	
$\begin{array}{c} C_3\\C_4\\C_5\end{array}$	8 7 7	$-\frac{8}{7}$	-1.0 1.0 0.3	-700 - 1	-0.9 0 -0.1	12 9 10	$ \begin{array}{r} 20 \\ -1 \\ 20 \\ -12 \end{array} $	$ \begin{array}{c} -0.1 \\ 2.2 \\ -1.2 \end{array} $	$2 \\ 4 \\ -17$	$0.2 \\ 0.4 \\ -1.7$
Σ(Δ/σ ₁)² X ² 95 % X ² 99%			$17 \cdot 9$ 11 · 1 15 · 1		$1 \cdot 3$ $9 \cdot 5$ $1 3 \cdot 3$			$58.0 \\ 11.1 \\ 15.1$		4·6 9·5 13·3

^{*} $\sigma_{\perp} = \{m_1^2 \sigma^2(x') + m_2^2 \sigma^2(y') + m_3^2 \sigma^2(z')\}^{\frac{1}{2}}.$

112°36

111°45

1.455

્ઝુ

112°15

<u>3′114°12</u> 1•421 (ď)

(c)

رین رین

Se

112

113

117°49

120°32

(1.44)

121°38

1.20

(b)

438 120°57

128°19

(1.35)

thiophthene (Cox, Gillot & Jeffrey, 1949) the distance of the S atom from the plane through all the atoms^{*} is -0.007 Å, and has negligible statistical significance.

Fig. 2. M.o. bond orders and free valences in: (a) α -thiophenecarboxylic acid (from exp. lengths), (b) α -selenophenecarboxylic acid (from exp. lengths), (c) thiophene (from exp. lengths of Bak et al., 1956), (d) thiophene (calc. by Longuet Higgins, 1949), (e) thiophene (calc. by Milazzo & De Alti, 1959), (f) selenophene (calc. by Milazzo & De Alti, 1959).

From bond distances, 'experimental' π -bond orders were derived using for C-C a smooth curve drawn through the points (0, 1.50), (0.525, 1.421), (0.667, 1.39), (1.0, 1.34) (Goodwin & Vand, 1955). For the other

* This plane, calculated with unit weights from the coordinates indicated with D, has the equation:

$$-0.6423x + 0.3294y - 0.6920z = -1.6125$$

The plane through $\mathrm{C_1C_2C_3}$ calculated with the same coordinates is

-0.6400x + 0.3205y - 0.6983z = -1.6438

and the distances of $\overline{1}(\frac{1}{2}, \frac{1}{2}, 0)$ and of S from this plane are: $p_1 = -0.001, \ p_2 = -0.029$ Å respectively.

Fig. 1. Bond lengths and angles in: (a) α -thiophene-carboxylic acid, (b) thiophene by electron diffraction (Schomaker & Pauling, 1939), (c) thiophene by microwave spectra (Bak et al., 1956), (d) α -selenophene-carboxylic acid.

10°40'

115°43'

Fig. 3. Packing of the dimers in the crystals of α -thiophene- and α -selenophene-carboxylic acids.

bonds linear relationships were assumed between the points: (0, 1.43), (1.0, 1.17) for C-O, (0, 1.97), (1.0, 1.71) for C-Se (Abrahams, 1956) and (0, 1.81), (1.0, 1.59) for C-S (Wheatley, 1953). The bond orders obtained are reported in Fig. 2 with free-valence values (Coulson, 1953). These last agree with the generally greater reactivity of the α' position in these compounds (Hartough, 1952; Chierici & Pappalardo, 1959). Longuet-Higgins (1949) has made molecular-orbital calculations on thiophene; it is interesting to observe that the results from his model are in a better agreement with the corresponding ones found in the ring of thiophene-acid than those deduced from experimental lengths for thiophene itself. The same cannot be said for the results of the m.o. calculations on thiophene given by Milazzo & De Alti (1959), although some qualitative agreement is observed between the bond orders and free valences calculated by these authors for selenophene and the corresponding values deduced from distances in selenophene-acid.

Bond orders for S–C and Se–C indicate a greater π -delocalization in the ring of thiophene-acid, but this is not supported by the dimensions of the remaining part of the ring which is practically unchanged in the two compounds. The difficulty of assigning the correct multiplicity to the C–S and C–Se bonds does not permit much weight to be put on

bond orders derived from the corresponding bond lengths.

A comparison between thiophene-acid and thiophene itself shows that, as a result of conjugation between carboxyl group and ring, there is a shortening in the C-S and C₂-C₃ bonds, corresponding to an increased π -delocalization in the ring. This seems to indicate that in the model for thiophene, calculated by Longuet-Higgins and much more in the model of Milazzo & De Alti, the π -delocalization is overemphasized. The lack of knowledge on dimensions of selenophene does not permit a similar comparison.

The molecules form centrosymmetrical dimers, being linked together by hydrogen-bonds which are not significantly different in the two acids (mean value of OH \cdots O distance: $2 \cdot 62 \pm 0 \cdot 01$ Å). The dimers are nearly coplanar; the dihedral angle between the planes

Table 9. Intermolecular distances

	SC_4H_3COOH	SeC_4H_3COOH
$O_1 - C_3(x - 1, y, z)$	3.923 ± 0.010 Å	3.943 ± 0.014 Å
$O_1 - C_2(x-1, y-1, z)$	3.648 ± 0.009	$3 \cdot 711 \pm 0 \cdot 014$
$X - C_2(x - 1, y, z)$	$3\cdot762\pm0\cdot008$	$3 \cdot 807 \pm 0 \cdot 011$
$X - X(1 - x, \frac{1}{2} + y, \frac{1}{2} - z)$	4.028 ± 0.004	3.963 ± 0.003
$C_1 - C_2(2 - x, \frac{1}{2} + y, \frac{1}{2} - z)$	$3 \cdot 862 \pm 0 \cdot 012$	$3 \cdot 978 \pm 0 \cdot 016$
$C_1 - C_1(2 - x, \frac{1}{2} + y, \frac{1}{2} - z)$	3.641 ± 0.018	3.700 ± 0.021
$O_{2} - C_{3}(2 - x, 1 - y, \bar{z})$	3.308 + 0.009	3.339 + 0.013

 $O_1O_2\overline{1}$ and $O_1O_2C_1\cdots C_5$ is equal in the two compounds: $178^{\circ}4'$ for thiophene- and $178^{\circ}6'$ for seleno-phene-acid.

The packing is shown in Fig. 3. The non-bonding distances are listed in Table 9.

Note added in proof.—A lack of planarity in the ring of α -thiophenic acid has been observed independently from a three-dimensional least squares low temperature (-170 °C) refinement by P. Hudson and J. H. Robertson (private communication) who find the sulphur atom lying 0.027 Å out of the best plane through the four carbon atoms of the ring.

The authors are indebted to the Consiglio Nazionale delle Ricerche for financial support, to the Centro Calcoli e Servomeccanismi della Università di Bologna for facilities in computing, to Prof. L. Cavalca for his interest and to Prof. L. Chierici for providing crystals of α -selenophene-carboxylic acid.

References

- ABRAHAMS, S. C. (1956). Quart. Rev. Chem. Soc. Lond. 10, 407.
- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- ALBRECHT, G. (1939). Rev. Sci. Instrum. 10, 221.
- Bak, B., Christensen, D., Rastrup-Andersen, J. & Tannenbaum, E. (1956). J. Chem. Phys. 25, 892.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- BERTINOTTI, F., GIACOMELLO, G. & LIQUORI, A. M. (1954). Acta Cryst. 7, 808.
- BROWN, B. W., LINGAFELTER, F. C., STEWART, J. M. & JENSEN, L. H. (1959). Acta Cryst. 12, 350.
- CHIERICI, L. & PAPPALARDO, G. (1959). Gazz. Chim. Ital. 89, 560.
- COCHRAN, W. (1953). Acta Cryst. 6, 260.
- COULSON, C. A. (1953). Valence. Oxford: Clarendon Press.
- Cox, E. G., GILLOT, R. J. J. H. & JEFFREY, G. A. (1949). Acta Cryst. 2, 356.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 747.
- CRUICKSHANK, D. W. J. (1959). Acta Cryst. 12, 1052.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DAWSON, B. (1960). Acta Cryst. 13, 403.
- DONOHUE, J. (1950). J. Amer. Soc. 72, 2071.
- EICHHORN, E. L. & MACGILLAVRY, C. H. (1959). Acta Crust. 12, 872.
- ELLER, H. v. (1955a). Bull. Soc. Chim. Franc., p. 1438.
- ELLER, H. v. (1955b). Bull. Soc. Chim. Franc., p. 1429.
- GERDING, H., MILAZZO, G. & ROSSMARK, H. H. K. (1953). Rec. Trav. Chim. Pays-Bas, 72, 957.

- GOEDKOOP, J. A. & MACGILLAVRY, C. H. (1957). Acta Cryst. 10, 125.
- GOODWIN, T. H. & THOMSON, C. M. (1954). Acta Cryst. 7, 166.
- GOODWIN, T. H. & VAND, V. (1955). J. Chem. Soc., p. 1683.
- HARTOUGH, H. D. (1952). The Chemistry of Heterocyclic Compounds. Thiophene and its Derivatives. New York: Interscience.
- HOLTZBERG, F., POST, B. & FANKUCHEN, I. (1953). Acta Cryst. 6, 127.
- JONES, R. E. & TEMPLETON, D. H. (1958). Acta Cryst. 11, 484.
- KAY, M. I. & KATZ, L. (1958). Acta Cryst. 11, 289.
- LONGUET-HIGGINS, H. C. (1949). Trans. Faraday Soc. 45, 173.
- MARSH, R. E., PAULING, L. & McCullough, J. D. (1953). Acta Cryst. 6, 71.
- MILAZZO, G. & DE ALTI, G. (1959). Gazz. Chim. Ital. 89, 2479.
- MORRISON, J. D. & ROBERTSON, J. M. (1949a). J. Chem. Soc. p. 980.
- MORRISON, J. D. & ROBERTSON, J. M. (1949b). J. Chem. Soc. p. 1001.
- MORRISON, J. D. & ROBERTSON, J. M. (1949c). J. Chem. Soc. p. 987.
- MORRISON, J. D. & ROBERTSON, J. M. (1949d). J. Chem. Soc. p. 993.
- NARDELLI, M. & FAVA, G. (1958). Gazz. Chim. Ital. 88, 229.
- NARDELLI, M., FAVA, G. & ARMELLINI, L. (1958). *Ric.* Sci. 28, 383.
- NORDMAN, C. E., WELDON, A. S. & PATTERSON, A. L. (1960). Acta Cryst. 13, 418.
- PARRY, G. S. (1951). Acta Cryst. 4, 131.
- PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.
- SCHOMAKER, V. & PAULING, L. (1939). J. Amer. Chem. Soc. 61, 1769.
- Schomaker, V., Waser, J., Marsh, R. E. & Bergman, G. (1959). Acta Cryst. 12, 600.
- SHAHAT, M. (1952). Acta Cryst. 5, 763.
- SHIONO, R. (1957). Technical Report No. 2. University of Pittsburg Computation and Data Processing Center.
- SHIONO, R. (1959). Technical Report No. 9. University of Pittsburg Computation and Data Processing Center.
- SIM, G. A., ROBERTSON, J. M. & GOODWIN, T. H. (1955). Acta Cryst. 8, 157.
- SUTOR, D. J., CALVERT, L. D. & LLEWELLYN, F. J. (1954). Acta Cryst. 7, 767.
- Тномая, L. H. & Uмеда, K. (1957). J. Chem. Phys. 26, 293.
- TROTTER, J. (1960). Acta Cryst. 13, 732.
- TROTTER, J. (1961). Acta Cryst. 14, 101.
- WEATHERBURN, C. E. (1947). Mathematical Statistics. Cambridge: University Press.
- WHEATLEY, P. J. (1953). Acta Cryst. 6, 369.
- WRIGHT, W. B. & KING, G. S. D. (1953). Acta Cryst. 6, 305.